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Abstract. The Einstein-Maxwell field equations are solved completely when the line 
element has the form 

ds2 =exp(2h) dt2-exp(2A)(dx2+dy2)-exp(2B) dz2 

where h, A and B are functions of t only, and is thus non-static. The metric admits a 
four-parameter group of motions. The Weyl tensor is type D and the electromagnetic field 
is non-null. 

1. Introduction 

Datta (1967) and Bera and Datta (1968) considered the line element 

ds2 = dt2 -exp(2A)[(dx)’+ (dy)’]-exp(2B) dz2  (1.1) 

where A and B are functions of the time variable t only, and searched for solutions of 
the Einstein-Maxwell field equations of this form. The metric given by (1.1) admits a 
four-parameter group of automorphisms which includes an Abelian, Bianchi type I, 
three-parameter subgroup with generators a l a x ,  a /ay  and a/az and a rotation in the x-y 
plane. These authors were, however, unable to obtain the general solution of the field 
equations for the case in question. The ordinary differential equations for A and B lead 
to a second-order non-linear ordinary differential equation ((3.12) below). The 
integration of (3.12) yields a first-order non-linear differential equation ((3.13) below) 
which is of a form not found in basic textbooks on ordinary differential equations, such 
as those by Kamke (1959) and Murphy (1960). This can, however, be integrated; an 
outline of the method is found in the Appendix. The solution for A is given by 
equations (3.14) and (3.15). 

However, the solution has been obtained in different forms by various authors. Two 
such basic forms are discussed liere. The first form is found by transforming (1.1) by 
redefining the t coordinate such that equation (1.1) becomes 

ds2 = exp(2h) dt2-exp(2A)(dx2+dy2)-exp(2B) dz2 (1.2) 

where h, A and B are functions of t only. There is now the freedom to put h equal to 
any function of A and B. Rosen (1962) gave a solution with h = 2A as an illustration of 
spatially homogeneous Rainich geometrics. A choice which leads to a solution in a 
more straightforward form is h = A. These solutions are given in § 3. 
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A second form is given in 0 4, where the solution given by (1.2) (or (1.1)) is shown to 
be related by a simple coordinate transformation to a solution of the Einstein-Maxwell 
equations of the form 

ds2 = R(r )  d u 2  - 2 d u  dr -- r2(dx2 + dy2). (1.3) 

However, the full solution (1.3) transforms to (1.2) or (1.1) only for a restricted range of 
coordinates and is thus more general. 

These line elements all have Weyl tensor of Petrov type D and belong to a class of 
line elements known as locally rotationally symmetric (see, for example, Cahen and 
Defrise 1968). The solution of the form (1.3) is also a charged version of a simple NUT 

metric. 

2. Basic equations 

The line element (1.2) can be split up into a null tetrad { I ,  n, m, m} in the language of 
Newman and Penrose (NP) (1962) such that 

1 = (2)-’”[exp(h) dt-exp(B) dz] 

n = (2)-”2[exp(h) dt + exp(B) dz]  

m = -(2)-1’2 exp(A) (dx + i  dy) 

m =complex conjugate of m. 

(2.1) 

Then the only non-zero NP spin coefficients are 

p = .--v = (2)-1’2A’ exp(-h) 

E = - = (21-3’~ B’ exp(-h) 

where the prime denotes differentiation with respect to t. When these are substituted 
into the NP field equations it follows that A’ = 0, in which case the space is flat, or 

exp B = exp(-h)(exp A)’ A ’ f O  (2.3) 

A1tt+7A1tA’- htlA’- 3h’Aft-  7At2h’  +2hI2A’ + 6At3  = 0. 

(where the constant of integration has been eliminated by a scaling of z in (1.2)) and 

(2.4) 

The only non-zero NP components of the Weyl and Ricci tensors are 

qr2 = exp(-2h)(A”+At2-  h’A‘) (2.5) 

and 

011 = exp(-2h) (2A”+ 3A‘* - 2A’h‘) 

respectively. Thus the metric is always type D (or type 0 if q2 = 0) and the electromag- 
netic field (if it exists) is non-null. There is an electromagnetic field if 

011 l=- 0. (2.7) 

Then Ol such that Q1& = OI1, where all is given by (2.6) and (2.7), automatically 
satisfies the NP version of Maxwell’s equations which reduce in this case to 

D@p, = 2pOi AO1=-2pOi. 
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Indeed, equation (2.4) is just DQ? = 4 p a ;  where all= CP: for @11> 0 and D actirlgon a 
function of t only is the operator (2)--1’2 exp(-h)J/at. 

Thus equation (2.4) integrates to give 

2A”+3A’2-2A’h’= 1 exp(2h -4A) (2.8) 

(2.9) 

where 1 is a (positive) constant. This is equivalent to 
Q, 1 1  -1 - 2 l  exp(-4A). 

3. Solutions with the line element of the form (1.2) 

As stated in the Introduction, a form of the solution with the line element given by (1.2) 
and with 

h = 2 A  (3.1) 

was given by Rosen (1962). From Q 4 of his paper 

exp A = 2a(tan ir) (sin t ) . - l=  a(cos it)-2 
exp B = sin t 

where a is a constant. This can be easily shown to be the general electromagnetic 
solution of (2.4) with (3.1) holding (with all of (2.6) positive) and where the constants 
of integration have been adjusted by translating the origin of t and by rescaling t. 

Perhaps the simplest form of the solution for the line element (1.2) can be found by 
putting 

h = A .  (3.3) 

In this case equation (2.8) gives 

2h”+  hI2 = 1 exp(-2h). (3.4) 

This integrates immediately to yield 

eh  = eA = a + bt+ct2 

eB = (b  + 2ct) (a  + bt + ct2)-’ 
(3.5) 

where a, b, c are constants of integration with 1 = 4ca - b2. Therefore 

Qll  = 3(4ac - b2) (a  + bt -k ~ t ~ ) - ~  (3.6) 

and with all > 0 then 4ac > b2 and consequently a + bt + ct2 = 0 does not have any real 
roots. Thus c must be always non-zero and t can be rescaled to set c = 1. The origin of t 
can be shifted by a linear transformation in such a way that the equivalent solution has 
b = 0. Then the full solution is (1.2) with 

eh  = eA = a + t 2  

all = 

eB = 2t(a + t2)-’ 
(3.7) 

= 2a(a + t2)-4 > o q2 = 2(a - t 2 )  (a + t2)-4.  

The electromagnetic field tensor can be found in the usual way from al. 
a = b = 0, c = 1 and the metric becomes, on rescaling z ,  

Notice that if 4ac = b2 (al1 = 0) a transformation can be made which effectively puts 

ds2 = t4(dt2-dx2-dy2) - tU2  dZ2. (3.8) 
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This is the non-flat vacuum metric given by Pate1 (1975, equation (3.7)). In the form of 
the line element ( l . l ) ,  it was given by Bera and Datta (1968, equation (36)) and 
discussed further by Bera (1969). 

It has one more symmetry than the G4 mentioned in 9 1; it admits the homothetic 
motion with generator 

This metric and a generalisation of it, the type C metric of Ehlers and Kundt (1962), 
have been shown by Halford (1979) to be the only type D vacuum metrics with 
expanding principal null congruence which admit non-trivial homothetic motions. 

Bera and Datta (1968) give another solution-their equation (35). This solution is 
equivalent to (3.5) but with a = c = 0, b = 1. Thus Ql1 is negative and their solution is 
unfortunately not a solution of the Einstein-Maxwell equations. With 

h = O  (3.10) 

the line element takes the form (1.1). The exact form of the solution is then not concise 
as in (3.7). However, the case is worth discussing for two reasons; firstly because the 
form (1.1) may seem to be the ‘natural’ form of the line element and, secondly, because 
the method of solution of the ordinary differential equation which arises is very 
interesting in its own right. 

With 

h = O  w =2A’ (3.11) 

(2.4) becomes 

2w’’+7wtw +3w3 = 0. (3.12) 

This equation can be immediately integrated to give 

w ’ + w 2 =  k(w’+zw ) . (3.13) 

The two solutions of Bera and Datta correspond to the cases where k = 0, a’+ w 2  = 0 
and k +CO,  w ’ + a w 2  = 0. The first case is the solution (3.5) with a = c = 0, b = 1 and the 
second is the vacuum solution (3.8). The method of integration of (3.13) is given in the 
Appendix. The solution is 

k expA = - l + [ ~ + ( l f ~ ~ ) ~ / ~ ] ~ ’ ~ + [ r - ( ( l + ~ ~ ) ~ / ~ ] ~ ’ ~  (3.14) 

3 2 314 

where 

r = 3k2t/4. (3.15) 

B can be found from (2.3). 

4. Solutions with the line element of the form (1.3) 

When the transformation 

du = d t  - exp(h - B) dt 

r = exp[A (t)] 

( 4 . 1 ~ )  

(4.lb) 
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is made, the line element (1.2) is mapped into 

d s 2 =  -exp{2B[t(r)]}du2-2 du dr-r2(dx2+dy2).  (4.2) 

d s 2 = R ( r ) d u 2 - 2 d u  dr-r2(dx2+dy2).  (4.3) 

This is a subcase of the line element (1.3) or 

When the metric coefficients are substituted into the Einstein-Maxwell field equations 
and the resultant differential equation solved, it is found that 

R (r) = e2rW2 - mr-’ (4.4) 
and for the tetrad 

1 -du n = dr - fR(r )  du m = -(2)-’”r(dx + i  dy) (4.5) 

the non-zero NP components of the Ricci and Weyl tensors are 

q2 = -imr-3 + e2r-4 (4.6) @ -1 2 - 4  11-2e r 

respectively. 
The EM field tensor F = fFFy dx’ A dx” is found to be 

JZ, 
F = - ~ ( l  AII cos a o + i m  A m sin ao)  

r 

where cyo = constant. The constant ‘e2’ in (4.4) is arbitrary and could be positive or 
negative, but is chosen to be positive so that will be positive. 

With mr-’ > O  and under the transformation (4.la), together with 

(a  ’ 0 )  a = e2m-l (4.7) 2 r = a + t  

and with appropriate scaling of the coordinates, the line element (4.3) and (4.4) maps 
into the form given by (1.2) and (3.7). Notice that (4.6) and (4.7) says that either m, r 
and a are all positive or all negative. If however 

mr-’ < o (4.8) 
a transform similar to (4.7) maps (4.3) and (4.4) into a line element somewhat similar to 
(1.2) and (3.7) but with t and z now space-like and time-like variables, respectively. 

5. Conclusion 

The Einstein-Maxwell solution of the form (1.1) which Datta (1967) and Bera and 
Datta (1968) were looking for is given with A satisfying equation (3.14) and where B 
can be found by integrating (2.3). However, the solution is given in neater forms by first 
changing to the more general line element (1.2) and then solving the differential 
equations by choosing h as a function of A in order to simplify the differential equation 
(2.4). Two such cases are when h = 2A and the solution as (3.2) is given as one of 
Rosen’s (1962) spatially homogeneous metrics and also when h = A  and the solution is 
given by equations (3.7). 

The solution is spatially homogeneous (it admits a Bianchi I group of motions on 
hypersurfaces t = constant), and locally rotationally symmetric (see Cahen and Defrise 
1968). Cahen and Defrise show that then it must necessarily be of Petrov type D. The 
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solution of the form (1.1) is also a subcase of general cases discussed by Jacobs (1969) 
and Collins (1972). 

A more general solution is that given in 0 4. The solution (4.3) and (4.4), however, 
becomes that of $ 3  when and only when mr-’ is positive. The solution with e = 0 is a 
very simple NUT solution: one with pa = po  = 0 in equation (2.62) of Newman et a1 
(1963) (see also Kasner (1921) and Petrov (1969)). The full solution is therefore just a 
charged version of this simple NUT solution. The NUT solutions have all been charged by 
Brill (1964). Kinnersley (1975) discusses the relationship between these solutions and 
other solutions of the Einstein or Einstein-Maxwell equations. 

If m = 0, (4.3) and (4.4) yield a charged type D solution. It also admits an extra 
motion; a homothetic one with generator 

a a a a  H = r- 4- 3u- + x-- + y-. 
ar all ax ay 

(5.1) 

The charged-NUT form of the solution given by (4.3) and (4.4) has a singularity at r = 0. 
This does not appear in solution (1.2) and (3.7) since the coordinate trarisformation 
( 4 . 1 ~ )  and (4.7) is not valid when I = 0. 

Appendix 

Equation (3.13) belongs to the general class of ordinary differential equations 

f (0’) + g ( w )  = h ( y ) j [ f ( w ’ )  + ag(o)l a f l  (AI) 

which can all be solved in a similar way. Here f ;  g, h and j are arbitrary functions. 
Although these equations are invariant under the mapping x -+ x +constant, they 
cannot be immediately integrated as, in general, they cannot be written in the form 
y’ = k ( y ) .  However they can be solved by finding two linear equations inf(w’) and g ( w )  
which arc: then solved as a set of linear equations for f ( w ’ )  and g(w).  The expression for 
g(w) is differentiated to yield o‘g’(w), w ‘  is then eliminated and the resultant differential 
equation solved. In (3.13), write 

o’+&J2 = f (A21 
such that (3.13) becomes 

w ’ + w 2 =  kf3I4,  

These two equations are solved for U ’  and w and give 

Equation (4.4b) is differentiated and w ‘  eliminated by using (4.4a). Then from (3.1 1) 
we have 

2~ =4A’=  - f ’ / f  (AS) 

f = exp(-4A) (A61 

so that 

where the constant of integration has been eliminated by rescaling both x and y. w has 
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now to be eliminated from (A4b) and (A.5). This yields a differential equation for f 
which from (A6) is the differential equation for exp(A). 

This equation integrates to give as its solution 

k 2 t  = i [$(k  exp A - 1)3’2 + 2(k  exp A - 1)*’2] (A71 
where the constant of integration has been eliminated by a shift of the origin of t. A is 
now found explicitly as a function of t by solving the cubic equation (A7) and is given by 
(3.14) and (3.15). 
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